山东省 >> 临沂市 >> 罗庄区 >> 黄山镇 >> 黄山镇数学备课组 >> 五年级
****单元小数乘法
单元分析
一、教学目标
1.让学生自主探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释。
2.使学生会用“四舍五入”法截取积是小数的近似值。
3.使学生理解整数乘法运算定律对于小数同样适用,并会运用这些定律进行关于小数乘法的简便运算,进一步发展学生的数感。
4.使学生体会小数乘法是解决生产、生活中实际问题的重要工具。
二、教材分析
1.选择贴近学生生活的情景,引入小数乘法的学习。
根据学生已有的知识基础,教材从丰富多彩的校内外活动中,选择“买风筝”、“换玻璃”的活动为背景,引入小数乘法的学习。这样的生活背景,不但能激发童心童趣,而且能促成学生利用元和角之间、米和分米之间的十进关系顺利沟通小数乘法与整数乘法的联系,利于学生将新知纳入到已有的认知系统中。
2.重点突出计算方法的教学。
考虑到学生已有的知识经验和认知水平,根据小数与整数的密切联系,教材先教学整数数乘法,再教学小数乘法。把重点放在计算的算理和方法的总结上,引导学生利用因数的变化引起积的变化规律来解释小数乘法的算理,并由此总结小数乘法的一般方法。
3.应用转化和对比,概括小数乘法的计算方法。
小数的书写方式,进位规则均与整数相同,教材紧扣两者的密切联系,引导学生:①用转化的方法,将小数乘法转化为整数乘。
②用对比的方法,处理积中小数点的位置问题。在例3、例4中,均采用对比的方法,让学生分别观察因数和积中小数的位数,找出它们之间的关系,然后利用这一关系,准确找到积中小数点的位置。
③帮助学生按一定顺序概括小数乘法的一般计算方法。例4的教学中,应用合作研讨的方式,引导学生自主地、有序地概括出计算小数乘法的一条清晰的思路:先按整数乘法算出积→再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点→乘得的积的小数位数不够,要在前面用0补足,再点小数点。
三、教学课时:
7课时
《小数乘法》教学设计(第1课时)
教学内容:人教版小学数学教材五年级上册第2~3页例1、例2及“做一做”,练习一第1~5题。
教学目标:
1.使学生理解小数乘整数的算理,掌握小数乘整数的一般方法,会比较熟练地进行笔算。
2.使学生经历将小数乘整数转化为整数乘整数的过程,自主探索小数乘整数计算方法的过程,渗透转化的数学思想,培养简单的逻辑推理能力。
3.使学生体会小数乘法在实际生活中的应用,感受数学源于生活,生活需要数学,形成积极的学习态度。
教学重点:掌握小数乘整数的一般计算方法。
教学难点:理解小数乘整数的算理。
教学准备:课件。
教学过程:
一、创设情景,提出问题
(一)课件呈现,寻找信息
1.课件呈现“放风筝”的情境以及各种不同形状的风筝。
2.课件呈现“买风筝”的情境(例1的主题图),画面上醒目地显示四种形状各异、价格不同的风筝。
3.设问:从图中你能看出哪些数学信息?
(二)提出问题,揭示课题
1.这节课我们就一起先来解决“买3个蝴蝶风筝多少钱”的问题,你能列出算式吗?(教师板书或PPT课件呈现:3.5×3=)
2.追问:这个算式和我们以前学过的算式有什么不同呢?
3.引导:今天我们就来学习小数乘整数。(板书课题:小数乘整数)
二、探索交流,解决问题
(一)感知算理
1.算一算:3.5×3,可以怎样计算?
给足时间,让每一位学生根据自己的知识和经验独立计算出买3个蝴蝶风筝所需的钱数。教师巡视,注意发现学生中的不同计算思路。
2.说一说:你是怎样计算的?
学生的计算思路可能有:用加法进行计算;改写为复名数进行计算;化“元”为“角”进行计算等。
(二)重点分析、研讨化“元”为“角”算法的算理
1.组织全班学生对上述多种不同解法逐一进行分析、评价和充分肯定。
2.引导学生着重分析化“元”为“角”的计算方法。
(1)师:上述几种算法中,你认为哪种算法比较简单?这种算法中的关键是什么?
(2)学生分析、对比、讨论后,引导学生用简洁的话总结、概括:先把3.5元转化为35角,再计算35角×3,最后将结果105角转化成10.5元。
(3)教师边小结边适时板书(或PPT课件动态呈现)如下竖式计算过程:
(4)小结:刚才我们在解决“买3个蝴蝶风筝多少钱”的问题时,想到了各种不同的计算方法。我们发现以“元”作单位的小数乘整数,可以转化成以“角”(或“分”)作单位的整数乘整数来进行计算。
(三)化“元”为“角”的计算方法
1.第2页“做一做”第1题。
(1)学生独立完成,教师指名演板。
(2)重点评价“把4.6元看作46角”进行计算的方法。
2.第2页“做一做”第2题。
(1)学生独立完成。
(2)组织学生交流解决问题的思路和方法(主要关注下面两种方法)。
方法一:先算出具体的钱数6.4元×7=44.8元,再与40元进行比较,做出判断。
方法二:直接通过估算解决,一个燕子风筝的价格是6.4元,超过了6元,买7个就超过了42元,所以40元不够。
(3)拓展:50元够吗?
(四)动态呈现小数乘整数的过程
1.出示算式0.72×5=?,提问:“0.72不是钱数,怎样计算?”
2.让学生独立思考,再引导学生提出:“能不能转化成整数来计算?”
3.学生尝试列竖式计算。(教师巡视,了解学生的计算方法。)
4.小组交流计算方法。
5.学生全班集体交流转化过程和计算方法,教师适时板演(或PP课件演示)乘法竖式计算过程,帮助学生理解算理算法。
(教师重点引导学生理解三点:怎样把因数0.72转化成整数?乘得的积应如何处理?积末尾的“0”如何处理?从而使学生更好地理解算理。)
由于因数0.72化成整数72必须“×100”,所以要使积不变,积360应“÷100”。
(五)将乘得的积化成最简小数
请学生观察乘得的积“3.60”,提问:3.60是最简小数吗?(不是!)提醒学生,乘得的积如果不是最简小数,可以根据小数的基本性质将积中小数末尾的0去掉。
(六)小结小数乘整数的一般方法
1.引导学生回顾3.5×3、0.72×5的计算过程。
2.提问:“想一想,在计算小数乘整数时,你先做什么?再做什么?最后又做什么?”
3.引导学生在理解的基础上归纳小数乘整数的一般方法:
(1)先将小数转化为整数;
(2)按整数乘法算出积;
(3)再确定积的小数点位置。(因数有几位小数,就从积的右边起数出几位,点上小数点。若积的末尾有“0”,末尾的“0”可以去掉。)
四、巩固新知
(一)专项练习
1.小数乘整数与整数乘整数的对比。(第3页“做一做”第1题)
(1)引导学生审题,明确题目要求,学生独立完成。
(2)组织学生交流、讨论,归纳小数乘整数与整数乘整数的不同:小数乘整数中有一个因数是小数,整数乘整数中两个因数都是整数;小数乘整数的积中,若小数末尾有0,这个0可以去掉,但整数乘整数的积末尾的0不能去掉。
2.确定积的小数点。(第3页“做一做”第2题)
(1)学生独立完成。
(2)组织学生交流:你是怎样确定积的小数点的位置的?积末尾的0是怎样处理的?
(二)计算练习(第3页“做一做”第3题)
1.学生独立完成,教师巡视,了解学生计算情况。
2.组织学生交流,着重交流第二个因数是两位数的两道小数乘法计算题(2.3×12和3.13×53)是怎样计算的。
(三)趣味练习(智慧岛)
1.小狗登城堡。
2.小金鱼戏水。
3.小蜜蜂采蜜。
(四)应用练习
1.练习一第3题。
(1)引导学生正确用合适的方法估计自己家到学校的路程。如:用步测的方法估计,知道自己的步长约为0.6 m,从自己家到学校约走多少步,用步长0.6 m乘走的步数,就得到自己家到学校的大致路程。
(2)通过计算自己每天、每周上学要走的路程,巩固小数乘整数的计算方法,加深对一千米有多长的具体的感受。
2.练习一第4题。
(1)第4题是根据****列的积,写出其他各列的积。
(2)本题利用表格的形式,让学生在按从左到右的顺序逐列写出积的过程中,自觉地应用积的变化规律,并打通小数乘法与整数乘法之间的联系,体会到小数乘法与整数乘法有什么相同和不同。
四、课堂总结,深化新知
这节课我们学到了什么?你是怎么学会的?
《小数乘法》教学设计(第2课时)
教学内容:人教版小学数学教材五年级上册第5~6页例3、例4及“做一做”,练习二第1~5题。
教学目标:
1.通过旧知迁移,引导学生自主探究、逐步理解小数乘小数的算理,掌握基本算法。
2.使学生掌握在确定积的小数点位置时,小数位数不够的,要在前面用0补足;引导学生发现一个因数比1大(或小)时,积和另一个因数的大小关系。
3.培养学生运用迁移的数学思想解决新问题的能力。
教学重点:小数乘小数的计算方法。
教学难点:小数乘法中积的小数位数和小数点位置的确定。
教学准备:课件、课本。
教学过程:
一、创设情景,提出问题
教学例3。
1.出示例题。
(1)师:同学们,最近我们要给学校宣传栏刷油漆,你能帮忙算算需要多少千克油漆吗?
(2)师:在计算需要多少千克油漆之前,需要先算出什么呢?
(3)板书(或用PPT课件演示):2.4×0.8=________
2.尝试计算。
(1)师:同学们,请观察这个小数乘法算式,它与我们上节课学习的小数乘法有什么不同?(两个因数都是小数。)
(2)师:我们上节课学习的小数乘整数是怎样计算的?那两个因数都是小数又怎么计算呢?
(3)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.4×0.8呢?如果能,应该怎样做?
(4)指名学生口答,教师适时板书(或PPT课件演示)学生的讨论结果。
3.理解算理。
引导学生得出:先把****个因数2.4乘10变成24,积就乘了10;再把第二个因数0.8乘10变成8,积就又乘了10,这时的积就乘了100。要得到原来的积,就应把乘得的积192除以100,得1.92。
4.进一步明确算理(两个因数的小数位数不同)。
(1)计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢?
(2)板书(或用PPT课件演示):1.92×0.9=________
(3)师:这道题也可以先按整数乘法计算吗?积里的小数点应该点在哪里呢?
二、探索交流,解决问题
(一)探究因数与积的小数位数的关系
1.学生独立完成第5页的“做一做”。
2.师:观察例3及“做一做”各题中因数与积的小数位数,你能发现什么?
(二)小结小数乘法的计算方法
1.组织学生回顾、讨论小数乘法是怎样计算的。
2.组织学生汇报、交流自己的计算方法。
(1)师:你是怎样计算的?(先按整数乘法算出积,再点小数点。)
(2)师:怎样确定积的小数点的位置?(点小数点时,先看因数中一共有几位小数,就从积的最右边起数出几位,再点上小数点。)
3.根据学生的讨论和交流,逐步归纳概括出小数乘法的计算方法,并让学生将教材第6页小数乘法的计算方法补充完整。
(一)教学例4
1.出示例题。
(1)师:同学们,我们刚刚总结了小数乘法的计算方法,你能运用小数乘法的计算方法来计算下面这道题吗?
(2)板书(或用PPT课件演示):0.56×0.04=________
2.尝试计算。
(1)学生尝试计算,教师巡视,了解学生的计算情况和遇到的问题。
(2)师:在计算时,遇到了什么新问题?
(3)师:乘得的积的小数位数不够时,怎样点小数点呢?
(二)及时巩固
1.学生独立完成教材第6页“做一做”的第1题。
(其中既有一般的小数乘法,也有积的小数末尾有0和积的小数位数不够的类型,帮助学生全面掌握小数乘法的计算。)
2.学生完成教材第6页“做一做”第2题的计算。
(三)探究积与因数的大小关系
1.集体订正“做一做”第2题时,引导学生分别将每组题中计算的结果和****个因数比较大小,发现其中的规律。
2.组织学生交流、总结自己发现的规律。
(1)一个数(0除外)乘大于1的数,积比原来的数怎么样?
(2)一个数(0除外)乘小于1的数,积比原来的数怎么样?
3.帮助学生进一步明确积与因数的大小关系,并结合具体例子明确应用这个关系可以判断乘法计算中的一些错误。
三、巩固应用,内化提升
(一)基本练习
1.练习二第1题(基本计算)。
(1)学生独立练习。
(2)组织学生交流和订正。(其中有****个因数的位数比第二个因数的位数少、积的小数末尾有0和积的小数位数不够等多种类型同时出现的小数乘法计算,让学生充分地交流和发表意见,教师适时给予指导,帮助学生全面掌握小数乘法的计算方法。)
2.练习二第2题(基本应用)。
见PPT
(1)帮助学生理解题意,指导学生看懂每种商品各有多少千克。
(2)引导学生回顾单价、数量和总价之间的关系。
(3)学生独立完成。
(二)拓展练习
补充题:在下面算式的括号里填上合适的数。(你能想出不同的填法吗?)
0.48=()×()
=()×()
四、全课总结,畅谈收获
说说这节课你有什么收获?
《小数乘法》教学设计(第3课时)
教学内容:人教版小学数学教材五年级上册第7页例5及“做一做”,练习二第6~8题。
教学目标:
1.经历在实际问题中收集和获取信息的过程,会正确利用小数倍解决实际问题,正确计算小数乘法。
2.掌握小数乘法的验算方法,体验解决问题方法的多样性,形成修正错误、严谨求实的科学态度。
3.形成独立思考、反思质疑的学习习惯,体验知识迁移的学习方法。
教学重点:利用小数倍解决实际问题。
教学难点:合理选择小数乘法的验算方法。
教学准备:课件、投影仪、计算器。
教学过程:
一、创设情景,提出问题
1.口算下面各题,看谁算得又对又快。(将答案按顺序记录在口算本上,再集体订正。)
3×0.5=0.7×4=2.1×3=1.1×8=
9×0.8=1.5×2=0.7×0.8=2.5×0.4=
2.解答:一支铅笔0.5元,一支水性笔的价钱是一支铅笔的3倍。一支水性笔多少钱?(指名学生回答:为什么用乘法计算?)
3.回顾:前面我们学习了关于小数乘法的哪些知识?
(学生自由回答,教师适时引导,整理回顾小数乘法的计算法则、确定积的小数点位置的方法以及积与因数的大小关系等。)
二、探索交流,解决问题
1.呈现教材主题情境图(PPT课件),让学生独立收集信息。
2.交流整理:从这幅图中你知道了哪些数学信息?(教师结合学生的回答,在课件上适时强调、突出相关的数学信息。)
(1)非洲野狗的****速度是56千米/时;
(2)鸵鸟的****速度是非洲野狗的1.3倍;
(3)要求的问题是“鸵鸟的****速度是多少千米/时”。
3.揭示课题:今天我们继续学习小数乘法——利用小数倍解决问题。〔板书课题:小数乘小数(2)〕
(二)自主探究,解决问题
1.你们会解决这个问题吗?
(1)学生独立尝试,在练习本上列式并解答。
(2)教师巡视,收集个案,并指名演板。
2.独立思考,小组交流。(PPT课件出示,给予独立思考的时间。)
(1)为什么用乘法计算?
(2)怎样计算小数乘法56×1.3?
(3)你算得对吗?
3.汇报梳理,构建方法。
(1)以前学习的“求一个数的整数倍是多少”,用乘法计算。那么求“一个数的小数倍是多少”也用乘法计算。(板书:求一个数的小数倍用乘法计算。)
(2)在计算小数乘法时,先按整数乘法算出积,再点小数点;点小数点时,看因数中一共有几位小数,就从积的最右边起数出几位,点上小数点。
(3)集体交流、核对。
(三)回顾检验,适当修正
1.出示教材中小朋友的计算过程(PPT课件)。(师:同学们,计算后我们往往需要检查计算结果是否正确。瞧!)
2.请你帮这位小女孩验算一下,她算得对吗?(独立完成。)
3.交流汇报,明确方法。(教师巡视。)
(1)把因数的位置交换一下,乘一遍,看对不对。(PPT课件呈现验算过程。)
(2)用计算器来验算。(投影演示。)
(3)根据积与因数的大小关系来验算。由于56乘1.3的积应该比56大,而7.28比56小,所以7.28肯定是计算错了。
4.检查过程,修正错误。
(1)师:同学们,在计算时我们往往先入为主,如果再算一遍,不一定能检查出计算中的错误,所以我们可以从刚才同学们使用的各种验算方法中选择适当的方法进行检查。
(2)师:在解决问题时,我们除了要检查计算是否正确以外,还要检查横式的得数写了没有,写对了没有?得数的单位名称是否正确?同学们,再检查一下,除了计算还有没有其他的问题,相互督促改正。
5.随堂巩固。(第7页“做一做”。)
(1)独立完成。
(2)集体订正。针对课堂中生成的问题,有目的地投影展示,学生评价与小结。
三、巩固练习,内化提升
(一)基本练习
1.练习二第6题(第二排的3道小题)。
(1)先计算,再验算。
(2)展示汇报,集体订正。
(3)订正时注意0.072×0.15的计算过程与验算方法。(按照整数乘法算出72乘15的积是1080,由于两个因数中一共有五位小数,而积的小数位数只有四位,先要在前面补一个“0”,再点上小数点,最后将积的小数末尾的“0”去掉,得0.0108。)
2.练习二第8题的****问:这只长颈鹿高多少米?
(1)认真审题,明确问题。(明确****问要解答的问题。)
(2)独立思考,解决问题。
(3)交流汇报,集体订正。(强调用小数倍直观地表示两个数量之间的关系。)
(二)提高练习
练习二第8题的第二问:梅花鹿比长颈鹿矮多少米?
(1)独立思考,自主解题。
(2)思考:如果直接求“梅花鹿比长颈鹿矮多少米”,你还能用别的方法解答吗?
四、回顾整理,提升反思
(一)回顾
1.今天这节课我们学习了哪些知识?
2.你是用以前学习的哪些知识来解决今天遇到的新问题?
(二)梳理
1.继续学习了小数乘法计算。
2.用小数倍表示两个数量之间的关系,并用小数倍解决问题,用小数倍解决问题与以前学过的用整数倍解决问题的方法是一样的。
3.计算后一定要验算,针对不同的计算类型可以灵活地选择合适的验算方法,发现错误要及时改正。
《小数乘法》教学设计(第4课时)
教学内容:人教版小学数学教材五年级上册第11页例6及“做一做”,练习三第1~3题。
教学目标:
1.使学生在比较熟练地掌握了小数乘法计算方法的基础上,能根据实际需要和题目要求正确地用“四舍五入”法求积的近似数。
2.培养学生灵活、合理地运用求积的近似数的方法解决实际问题的意识和能力。
3.使学生进一步体会数学知识之间、数学知识与现实生活之间的联系,提高学习数学的信心和兴趣。
教学重点:正确地用“四舍五入”法求积是小数时的近似数。
教学难点:初步理解求积的近似数往往是“实际应用”的需要。
教学过程:
一、创设情境,生成问题
1.计算下面各题。
1.5×240.37×2.64.02×8.3
(1)学生独立完成,指名演板,集体订正。
(2)说一说小数乘法应该怎样进行计算?
2.求下面各小数的近似数。
保留一位小数:3.12;5.549;0.3814。
保留两位小数:4.036;7.7963;8.42378。
(1)独立完成,集体反馈。
(2)7.7963的近似数为什么是7.80?
(3)我们刚才是用什么方法来求小数的近似数的?用这种方法求小数的近似数应该注意什么?
二、探究交流,解决问题
(一)谈话导入,揭示课题
1.谈话导入:在实际应用中,小数乘法的积往往不需要保留很多的小数位数,这时可以根据需要,按“四舍五入”法保留一定的小数位数,求出积的近似数。(PPT课件呈现谈话内容。)
2.揭示课题:积的近似数。(板书课题:积的近似数)
(二)了解信息,解决问题
1.出示情境图(PPT课件)。
小狗正在做什么?人们训练小狗缉毒是利用了小狗的什么特点?小狗嗅觉灵敏与嗅觉细胞的数量多少有很大关系,下面请看一个与之相关的实际问题。
2.出示例6(PPT课件)。
(1)题目中有哪些数学信息?提出了什么问题?
(2)你会解答这个问题吗?怎样解答?
(3)题目中对解答这个问题有什么特殊要求?
(4)这里的“得数保留一位小数”表示要求出积的近似数,那么条件中的“0.049亿”是近似数还是准确数呢?为什么不用准确数?
3.学生独立尝试,指名两名学生演板。
4.组织学生观察、评价黑板上两名演板同学的解答过程。
5.组织学生交流、反馈自己的解答过程。(教师适时演示PPT课件。)
(1)你是怎样解决这个问题的?
(2)解决这个问题时需要注意什么?
(3)你是怎样将“得数保留一位小数”的?
(4)写横式的得数时要注意什么?
三、巩固练习,反思提升
(一)求“积的近似数”的基本练习
1.第11页“做一做”第1题。
(1)出示题目(PPT课件)。
1.计算下面各题。
0.8×0.9(得数保留一位小数)
1.7×0.45(得数保留两位小数)
|
(2)全班齐练,指名两人演板。
(3)集体订正。
2.补充题。
(1)出示题目(PPT课件)。
补充题:
将“1.35×0.96”的积用“四舍五入”法保留两位
小数,所得的近似数是()。
A.1.29B.1.30C.0.13
|
(2)学生独立思考,用自己的方法进行判断和选择。
(3)组织学生集体交流自己是怎样做出判断和选择的。(教师强调:用“四舍五入”法按要求保留小数位数时,所求得近似数末尾的“0”必须保留,不能随意去掉。)
(二)求“积的近似数”的实际应用
1.第11页“做一做”第2题。
(1)出示问题(PPT课件):一种大米的价格是每千克3.85元,买2.5 kg应付多少钱?
(2)全班齐练,教师巡视。(选择两名同学演板,一人的得数是准确数,一人的得数是近似数。)
(3)集体订正,追问质疑。
质疑一(对得数是准确数的同学):这节课学习的是求“积的近似数”,你为什么用准确数表示求得的积?
质疑二(对得数是近似数的同学):这一题的问题没有保留几位小数的要求,你为什么用近似数表示求得的积?
2.集体讨论。
(1)再遇到这样的实际问题,我们应该怎样处理?
(2)通过这道题的解答,你感受到了什么?(在实际应用中,应该根据需要按“四舍五入”法保留一定的小数位数,求出积的近似数。)
四、回顾整理
谈谈这节课你有哪些收获?